skip to main content


Search for: All records

Creators/Authors contains: "Nye, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schwartz, R. ; Roehrig, G. ; Martin-Hansen, L. ; Kemp, P. ; Utano, J. (Ed.)
    A key mission for museums is to engage a large and diverse public audience in science learning (Macdonald, 1997). To that end, science museums attempt to use immersive technologies in entertaining, socially oriented, and innovative ways. An example is the use of augmented reality (AR) to overlay virtual objects onto the real-world (Azuma, Baillot, Behringer, Feiner, Julier, & MacIntyre, 2001).We used a Design Based Research (DBR) approach to develop and test four features of an AR experience to promote place-based science learning in an museum setting. While quantitative differences were not found among conditions in knowledge gained, significant learning gains were seen from pre to post, illustrating the potential for place-based informal science learning. Incorporating AR technology into museum exhibits can update them with 21st tools to support visitor engagement in the learning experience. This research contributes to understanding of usability and logistical issues for different AR designs for a public, outdoor informal settings. 
    more » « less
  2. Can Augmented Reality (AR) immersion and interactivity dispel misconceptions and increase public understanding of science? The interdisciplinary team including USC’s Institute for Creative Technologies, the Rossier School of Education and the La Brea Tar Pits Museum, developed two AR engagements, one miniature “tabletop” and one life-sized “field” experience to investigate the differences in AR across qualitatively distinct designs on interactivity and visual immersion. Participants were able to take part in a “virtual active dig site” and discover fossils preserved in the asphalt seep; they were also able to walk amongst Mammoths in a virtual simulation of Los Angeles from 25,000 years ago. Learning goals for the experiences included: how and what types of plants and animals are entrapped in the tar pits; the similarities/differences between the LA ecosystem in the ice age vs. present; and how we use the scientific method of testing ideas with evidence and revising hypotheses. Design considerations made to evaluate the efficacy of achieving learning objectives, and engagement included: interactivity (selection and manipulation); levels of immersion (smartphone vs head-mounted display), aesthetics (high-fidelity vs low-poly 3D-models). Take-aways from pilot and formal user-studies include the ability to achieve strong interest and consistent learning with lower-fidelity AR; strong reactions to large-scale, life-sized events even with lower fidelity models; mini-experiences, large scale, and even 2D posters (control) can be engaging with the right narrative and framing. Further results from the “Pit-91” tabletop study are being analyzed and data collection on the “Field Experience” is set to investigate a life-sized experience. 
    more » « less